

Adversaries

What happens when you are confronted
with a world in which there is an agent

trying to defeat you?

Adversaries

You are trying to maximize your benefits while
someone is trying to maximize theirs.

If the situation is zero-sum, then your reasoning has
to incorporate their actions as well as your own.

Strategic thinking = intelligence
Two-player games have been a key focus of AI as long as computers have been around…

?

humans computers

good at evaluating the
strength of a board

for a player

good at looking ahead in
the game to find winning
combinations of moves

Humans and computers have different relative strengths in these games:

- experts could reconstruct these perfectly
- novice players did far worse…

An experiment (by deGroot) was performed in which chess
positions were shown to novice and expert players…

How humans play games…

- experts could reconstruct these perfectly
- novice players did far worse…

Random chess positions (not legal
ones) were then shown to the two
groups

- experts and novices did just as
badly at reconstructing them!

An experiment (by deGroot) was performed in which chess
positions were shown to novice and expert players…

How humans play games…

How computers play games…

Task Environments

• Deterministic, fully observable  single-state problem
– Agent knows exactly which state it will be in; solution is a sequence of

actions

• Non-observable sensorless (conformant) problem
– Agent may have no idea where it is; solution is a sequence

• Nondeterministic and/or partially observable contingency
problem
– percepts provide new information about current state

– often interleave search, execution

• Unknown state space  exploration problem

How computers play games…

Games’ Branching Factors

Branching Factor Estimates

for different two-player games

Tic-tac-toe 4

Connect Four 7

Checkers 10

Othello 30

Chess 40

Go 300

• On average, there are fewer than 40 possible moves that a chess player can make
from any board configuration…

0 Ply

1 Ply

2 Ply

Hydra at
home in
the
United
Arab
Emirates…

18 Ply!!

Optimal Strategy

• An Optimal Strategy is one that is as least as
good as any other, no matter what the
opponent does

– If there's a way to force the win, it will

– Will only lose if there's no other option

Minimax: An Optimal Strategy

Minimax Algorithm: An Optimal Strategy

Choose the best move based on the resulting states’
MINIMAX-VALUE…

MINIMAX-VALUE(n) =
if n is a terminal state

then Utility(n)
else if MAX’s turn

the MAXIMUM MINIMAX-VALUE
of all possible successors to n

else if MIN’s turn
the MINIMUM MINIMAX-VALUE
of all possible successors to n

Baby Nim

Take 1 or 2 at each turn
Goal: take the last match

Baby Nim
5

4 3

3 2 2 1

1 2

1 12 2

W

1

W12 1 1 W

1 1 12 2 2

1 W W W W

W

1 1 1 1

1

2

Take 1 or 2 at each turn
Goal: take the last match

W

W

= 1.0

= -1.0

MAX wins

MIN wins/
MAX loses

MAX

MAX

MAX

MIN

MIN

Baby Nim
5

4 3

3 2 2 1

1 2

1 12 2

W

1

W12 1 1 W

1 1 12 2 2

1 W W W W

W

1 1 1 1

1

2

Take 1 or 2 at each turn
Goal: take the last match

W

W

= 1.0

= -1.0

MAX wins

MIN wins/
MAX loses

MAX

MAX

MAX

MIN

MIN

-1.0

1.0

1.0 1.0 1.0

-1.0 -1.0 -1.0

Baby Nim
5

4 3

3 2 2 1

1 2

1 12 2

W

1

W12 1 1 W

1 1 12 2 2

1 W W W W

W

1 1 1 1

1

2

Take 1 or 2 at each turn
Goal: take the last match

W

W

= 1.0

= -1.0

MAX wins

MIN wins/
MAX loses

MAX

MAX

MAX

MIN

MIN

-1.0

1.0

1.0 1.0 1.0

-1.0 -1.0 -1.01.0

Baby Nim
5

4 3

3 2 2 1

1 2

1 12 2

W

1

W12 1 1 W

1 1 12 2 2

1 W W W W

W

1 1 1 1

1

2

Take 1 or 2 at each turn
Goal: take the last match

W

W

= 1.0

= -1.0

MAX wins

MIN wins/
MAX loses

MAX

MAX

MAX

MIN

MIN

-1.0

1.0

1.0 1.0 1.0

-1.0 -1.0 -1.01.0

-1.0 -1.0 -1.0 -1.0

Baby Nim
5

4 3

3 2 2 1

1 2

1 12 2

W

1

W12 1 1 W

1 1 12 2 2

1 W W W W

W

1 1 1 1

1

2

Take 1 or 2 at each turn
Goal: take the last match

W

W

= 1.0

= -1.0

MAX wins

MIN wins/
MAX loses

MAX

MAX

MAX

MIN

MIN

-1.0

1.0

1.0 1.0 1.0

-1.0 -1.0 -1.01.0

-1.0 -1.0 -1.0 -1.0

1.0 1.0 1.0-1.0

Baby Nim
5

4 3

3 2 2 1

1 2

1 12 2

W

1

W12 1 1 W

1 1 12 2 2

1 W W W W

W

1 1 1 1

1

2

Take 1 or 2 at each turn
Goal: take the last match

W

W

= 1.0

= -1.0

MAX wins

MIN wins/
MAX loses

MAX

MAX

MAX

MIN

MIN

-1.0

1.0

1.0 1.0 1.0

-1.0 -1.0 -1.01.0

-1.0 -1.0 -1.0 -1.0

1.0 1.0 1.0-1.0

-1.0 1.0

MINIMAX example 2

MAX

MIN

3 12 8 2 4 6 14 5 2

Properties of minimax

• For chess, b ≈ 35, d ≈100 for "reasonable" games
 exact solution completely infeasible

•

• Is minimax reasonable for
– Mancala?

• B?

• D?

– Tic Tac Toe?
• B?

• D?

Baby Nim
5

4 3

3 2 2 1

1 2

1 12 2

W

1

W12 1 1 W

1 1 12 2 2

1 W W W W

W

1 1 1 1

1

2

Take 1 or 2 at each turn
Goal: take the last match

W

W

= 1.0

= -1.0

MAX wins

MIN wins/
MAX loses

MAX

MAX

MAX

MIN

MIN

-1.0

1.0

1.0 1.0 1.0

-1.0 -1.0 -1.01.0

-1.0 -1.0 -1.0 -1.0

1.0 1.0 1.0-1.0

-1.0 1.0

Alpha-Beta Pruning
Pruning

eliminate parts of the tree from consideration

Alpha-Beta pruning
prunes away branches that can’t possibly
influence the final decision

Consider a node n
If a player has a better choice m (at a parent or

further up), then n will never be reached
So, once we know enough about n by looking at

some successors, then we can prune it.

Alpha-Beta Example

[-∞, +∞]

[-∞,+∞]

Do DF-search until first leaf

Alpha-Beta Example (continued)

[-∞,3]

[-∞,+∞]

Alpha-Beta Example (continued)

[-∞,3]

[-∞,+∞]

Alpha-Beta Example (continued)

[3,+∞]

[3,3]

Alpha-Beta Example (continued)

[-∞,2]

[3,+∞]

[3,3]

Alpha-Beta Example (continued)

[-∞,2]

[3,14]

[3,3] [-∞,14]

,

Alpha-Beta Example (continued)

[−∞,2]

[3,5]

[3,3] [-∞,5]

,

Alpha-Beta Example (continued)

[2,2][−∞,2]

[3,3]

[3,3]

Alpha-Beta Example (continued)

[2,2][-∞,2]

[3,3]

[3,3]

Properties of α-β

• Pruning does not affect final result

•

• However, effectiveness of pruning affected by…?

• What impact can it have on running time?

Why is it called α-β?

• α is the value of the
best (i.e., highest-value)
choice found so far at
any choice point along
the path for max

• If v is worse than α, max
will avoid it
 prune that branch

• Define β similarly for
min

Problems with AB Pruning?

Resource limits

Suppose we have 100 secs, and can explore 104

nodes/sec
 can explore 106 nodes per move

Standard approach (Shannon, 1950):
• evaluation function

= estimated desirability of position

• cutoff test:
e.g., depth limit

Cutting off search
• Change:

– if TERMINAL-TEST(state) then return UTILITY(state)

• into
– if CUTOFF-TEST(state,depth) then return EVAL(state)

• Introduces a fixed-depth limit
– Is selected so that the amount of time will not exceed

what the rules of the game allow.

• When cuttoff occurs, the evaluation is performed.

Heuristic EVAL
• Idea: produce an estimate of the expected utility of the game

from a given position.

• Performance depends on quality of EVAL.

• Requirements:
– EVAL should order terminal-nodes in the same way as UTILITY.

– Computation may not take too long.

– For non-terminal states the EVAL should be strongly correlated
with the actual chance of winning.

Simple Mancala Heuristic: Goodness of board = # stones in my
Mancala minus the number of stones in my opponents.

Heuristic EVAL example

Eval(s) = w1 f1(s) + w2 f2(s) + … + wnfn(s)

(b) White to move(a) White to move

Heuristic difficulties
Simple heuristic - weighing the pieces by material value

Black to move

Horizon effect
Fixed depth search

thinks it can avoid

the queening move

Games that include chance

• Whites turn, After rolling a 5 and a 6

• Possible moves (5-10,5-11), (5-11,19-24),(5-10,10-16) and (5-
11,11-16)

Games that include chance

• Possible moves (5-10,5-11), (5-11,19-24),(5-10,10-16) and (5-
11,11-16)

• [1,1], [6,6] chance 1/36, all other chance 1/18

Games that include chance

• [1,1], [6,6] chance 1/36, all other chance 1/18
• Can not calculate definite minimax value, only expected value

Expecti minimax value

EXPECTI-MINIMAX-VALUE(n)=

UTILITY(n) If n is a terminal

maxs  successors(n) MINIMAX-VALUE(s) If n is a max node

mins  successors(n) MINIMAX-VALUE(s) If n is a min node

s  successors(n) P(s) . EXPECTIMINIMAX(s) If n is a chance node

These equations can be backed-up recursively all the
way to the root of the game tree.

EXPECTEDMINIMAX example

2 4 5 3 1 1 6 4

MIN

MAX

CHANCE

.9 .9.1 .1

EXPECTIMINIMAX example

2 4 5 3 1 1 6 4

MIN

MAX

CHANCE

.9 .9.1 .1

2 3 1 4

EXPECTIMINIMAX example

2 4 5 3 1 1 6 4

MIN

MAX

CHANCE

.9 .9.1 .1

2 3 1 4

2.1 1.3

Position evaluation with chance nodes

• What will minimax do here?

• Is that OK?

• What might you do instead?

