

Adversaries

What happens when you are confronted with a world in which there is an agent trying to defeat you?

Adversaries

You are trying to maximize your benefits while someone is trying to maximize theirs. If the situation is zero-sum, then your reasoning has to incorporate their actions as well as your own.

humans

good at evaluating the strength of a board for a player

computers

good at looking ahead in the game to find winning combinations of moves

How humans play games...

An experiment (by deGroot) was performed in which chess positions were shown to novice and expert players...

- experts could reconstruct these perfectly
- novice players did far worse...

How humans play games...

An experiment (by deGroot) was performed in which chess positions were shown to novice and expert players...

- experts could reconstruct these perfectly
- novice players did far worse...

<u>Random</u> chess positions (not legal ones) were then shown to the two groups

> experts and novices did just as badly at reconstructing them!

- Deterministic, fully observable \rightarrow single-state problem
 - Agent knows exactly which state it will be in; solution is a sequence of actions
- Non-observable \rightarrow sensorless (conformant) problem
 - Agent may have no idea where it is; solution is a sequence
- Nondeterministic and/or partially observable → contingency problem
 - percepts provide new information about current state
 - often interleave search, execution
- Unknown state space \rightarrow exploration problem

Games' Branching Factors

• On average, there are fewer than 40 possible moves that a chess player can make from any board configuration...

- An Optimal Strategy is one that is as least as good as any other, no matter what the opponent does
 - If there's a way to force the win, it will
 - Will only lose if there's no other option

function MINIMAX-DECISION(state) returns an action

 $v \leftarrow \text{MAX-VALUE}(state)$ return the *action* in SUCCESSORS(*state*) with value v

function MAX-VALUE(state) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state) $v \leftarrow -\infty$ for a, s in SUCCESSORS(state) do $v \leftarrow MAX(v, MIN-VALUE(s))$ return v

function MIN-VALUE(state) returns a utility value

```
if TERMINAL-TEST(state) then return UTILITY(state)

v \leftarrow \infty

for a, s in SUCCESSORS(state) do

v \leftarrow MIN(v, MAX-VALUE(s))

return v
```

Minimax Algorithm: An Optimal Strategy

Choose the best move based on the resulting states' MINIMAX-VALUE...

MINIMAX-VALUE(n) =if n is a terminal state then Utility(n) else if MAX' s turn the MAXIMUM MINIMAX-VALUE of all possible successors to n else if MIN's turn the MINIMUM MINIMAX-VALUE of all possible successors to n

Baby Nim

Take 1 or 2 at each turn Goal: take the last match

MAX

Baby Nim MAX 2 1 MIN 2 2 1 MAX 2 2 1 1 1 MIN Ŵ W AU 2 1 (-1.0)(-1.0)(-1 1

MINIMAX example 2

Properties of minimax

For chess, b ≈ 35, d ≈100 for "reasonable" games
 → exact solution completely infeasible

- Is minimax reasonable for
 - Mancala?

 \cap

- B?
- D?
- Tic Tac Toe?
 - B?
 - D?

Alpha-Beta Pruning

Pruning

eliminate parts of the tree from consideration

Alpha-Beta pruning prunes away branches that can't possibly influence the final decision

Consider a node *n*

If a player has a better choice *m* (at a parent or further up), then *n* will never be reachedSo, once we know enough about *n* by looking at some successors, then we can prune it.

Alpha-Beta Example

Do DF-search until first leaf

Properties of α - β

• Pruning does not affect final result

 \circ

- However, effectiveness of pruning affected by...?
- What impact can it have on running time?

Why is it called α - β ?

- α is the value of the best (i.e., highest-value) choice found so far at any choice point along the path for max
- If v is worse than α, max will avoid it

 \rightarrow prune that branch

 Define β similarly for min


```
function ALPHA-BETA-SEARCH(state) returns an action
inputs: state, current state in game
```

```
v \leftarrow MAX-VALUE(state, -\infty, +\infty)
return the action in SUCCESSORS(state) with value v
```

function MAX-VALUE(state, α, β) returns a utility value

```
inputs: state, current state in game
```

 α , the value of the best alternative for MAX along the path to state

 β , the value of the best alternative for MIN along the path to *state*

```
if TERMINAL-TEST(state) then return UTILITY(state)
```

```
v \leftarrow -\infty

for a, s in SUCCESSORS(state) do

v \leftarrow MAX(v, MIN-VALUE(s, \alpha, \beta))

if v \ge \beta then return v

\alpha \leftarrow MAX(\alpha, v)

return v
```

```
function MIN-VALUE(state, \alpha, \beta) returns a utility value
```

inputs: *state*, current state in game

 α , the value of the best alternative for MAX along the path to *state*

 β , the value of the best alternative for MIN along the path to *state*

```
if TERMINAL-TEST(state) then return UTILITY(state)
```

```
v \leftarrow +\infty
for a, s in SUCCESSORS(state) do
v \leftarrow MIN(v, MAX-VALUE(s, \alpha, \beta))
if v \le \alpha then return v
\beta \leftarrow MIN(\beta, v)
```

return v

Problems with AB Pruning?

Resource limits

Suppose we have 100 secs, and can explore 10⁴ nodes/sec

 \rightarrow can explore 10⁶ nodes per move

Standard approach (Shannon, 1950):

- evaluation function
 - = estimated desirability of position
- cutoff test:
 e.g., depth limit

Cutting off search

- Change:
 - if TERMINAL-TEST(state) then return UTILITY(state)
- into

if CUTOFF-TEST(state,depth) then return EVAL(state)

- Introduces a fixed-depth limit
 - Is selected so that the amount of time will not exceed what the rules of the game allow.
- When cuttoff occurs, the evaluation is performed.

- Idea: produce an estimate of the expected utility of the game from a given position.
- Performance depends on quality of EVAL.
- Requirements:
 - EVAL should order terminal-nodes in the same way as UTILITY.
 - Computation may not take too long.
 - For non-terminal states the EVAL should be strongly correlated with the actual chance of winning.

Simple Mancala Heuristic: Goodness of board = # stones in my Mancala minus the number of stones in my opponents.

Heuristic EVAL example

 $Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$

	-					
Ĩ	<u>.</u>				율	
	<u>.</u>				Ŵ	
	<u>•</u>				율	
			<u>.</u>	B		
		<u>_</u>				Ŵ
<u> </u>	<u>.</u>			Ŷ	율	
	<u>.</u>				£	
I	<u>.</u>				율	

		<u>Ý</u>					
<u>.</u>	<u>•</u>	<u>.</u>			<u>•</u>	<u>.</u>	<u>.</u>
			1				
				<u>-</u>			
		Ŷ		율			
		ß					
<u><u>B</u></u>	율	£			<u><u><u>9</u></u></u>	Ŵ	윮
			Ŵ			⊒	←

Fixed depth search thinks it can avoid the queening move

Ĭ					
				<u>1</u>	
			1		
	量			율	
	율				
	量			<u>1</u>	
	율			<u>-</u>	
	율			<u>•</u>	

Expecti minimax value

EXPECTI-MINIMAX-VALUE(n)=

UTILITY(n)If n is a terminal $\max_{s \in successors(n)}$ MINIMAX-VALUE(s)If n is a max node $\min_{s \in successors(n)}$ MINIMAX-VALUE(s)If n is a min node $\sum_{s \in successors(n)} P(s)$ EXPECTIMINIMAX(s)If n is a chance node

These equations can be backed-up recursively all the way to the root of the game tree.

Position evaluation with chance nodes

- What will minimax do here?
- Is that OK?
- What might you do instead?